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Outline

• Goal and overview of Edge Simulation Laboratory codes

• TEMPEST prototype 4D and 5D code applied to circular and
divertor geometries
– reported here and by Xu this meeting; April ‘08 ITPA; Xu et al.,

PRL, Phys. Rev. E ‘08

• Next generation 4D (--> 5D) code that builds on experience with
TEMPEST, EGK, and NEO
– status reported here
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Goal: gyrokinetic 4D and 5D continuum edge
simulations for pedestal and SOL physics

• GK F-equation discretized with high order (4th); Fokker-Planck
collisions; here energy-dependent Lorentz op.

• Electrostatic potential via Poisson eqn
• Circular & divertor geometry
• Runnable as

– 4-D for transport with F(Ψ,θ,ε,µ), or
– 5-D for turbulence with F(Ψ,θ,φ ,ε,µ) - underway

• Extensions planned:
– sources/sinks
– model transport coefficients for initial anomalous transp.
– generalized GK equations (see Qin; Dimits)
– *field-aligned coordinates for evolving B
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Edge Simulation Laboratory: code history

• TEMPEST prototype 4D and 5D code applied to circular and
divertor geometries
– reported here and by Xu this meeting; Xu et al., PRL, Phys. Rev. E

‘08

• Next generation 4D (--> 5D) code that builds on experience with
TEMPEST, EGK, and NEO
– reported here

• EGK and NEO prototype flux-tube codes
– Invited talk, this APS-DPP meeting
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TEMPEST simulates kinetic ion profiles/
transport for a DIII-D magnetic equilibrium
• To clarify details of the results, the thin annular edge region is

displayed in a convenient slab image

• Nevertheless, computations include full toroidal geometry effects
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TEMPEST simulations in divertor geometry with model Er
indicate expected asymmetries and non-Maxwellian f

• Obtaining these results required proper accounting for direction of total flow at divertor
plates in b.c.’s

Outer midplane Divertor plate f at outer midplane
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TEMPEST simulations in divertor geometry with model Er
indicate expected asymmetries and non-Maxwellian f
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Pedestal profiles of ni and Ti show strong
poloidal asymmetries - even with Er
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Steep-gradient case illustrates need for
high-order advection scheme
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Developing algorithms and next generation code
to deal with the challenges of edge GK

• Conservation
• Low-dissipation advection (orbits)
• Preservation of distribution

function positivity
• Efficient resolution of a large and

complicated phase space
• Use f(v||,µ) or f(v||,θpa), not f(E,µ)
• Robust  for high anisotropy

Numerical methodologies:
• Finite volume discretizations with

conservative formulations
• High-order (4th) discretization
• Mapped, multiblock grids
• Data structures allow parallization in

both configuration & velocity space

Mapping

X = X (»)

X

» = (Ã;µ)

Flux surface label

Ã

Poloidal
distance

µ

Applied math participants:
M. Dorr, J. Hittinger, LLNL
P. Colella, D. Martin, LBNL

Experience with TEMPEST, EGK,
and NEO emphasize needs:

Consistent 4th order treatment of
geometry and function variations on
uniform mapped mesh
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Have developed high-resolution discretizations and
are applying to gyrokinetic Vlasov equation

• Gyrokinetic Vlasov equation describes advection by a phase space
velocity field that is a nonlocal function of the distribution function f :

• Dependence of the phase space velocities      and        on  f  is through the
Poisson solve

• To obtain a high-order discretization that is robust for this highly nonlinear
system, we combine
– fourth-order flux-corrected transport (FCT) spatial discretization: as part of

this project - Colella and Sekora, JCP ‘08
• fourth-order accuracy where solution is smooth (does not reduce

accuracy at smooth extrema like classical FCT and PPM)
• combined with an FCT limiter (Zalesak) preserves positivity of f
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Temporal convection of 2D “blobs and
holes” show robustness of new method
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Application of the mapped grid finite volume
discretization to an advection test problem

Physical
coordinates:
highly irregular
mesh in center

Mapped to uniform
computational
coordinates

Fourth order mesh convergence demonstrated
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4th-order accuracy GK Poisson discretization
obtained on core equilibrium geometries
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Schedule for next year:

• New ESL code released to physics team:
– Now completing 4D, core: results by Dec
– 4D, divertor: spring ’09
– 5D, core: summer-fall ’09
– 5D, divertor, start summer ’09
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Summary

1. Kinetic ion orbit effects  produce substantial
poloidal variations in ni and Ti ; Er via orbit
squeezing can reduce variation, but orbit loss can
also be influential

2. New ESL code components being assembled/tested
• Advection - tested
• Poisson eqn -tested
• 4D version with drift orbits nearly assembled


